The Erwin Schrr Odinger International Institute for Mathematical Physics Field Theory on a Supersymmetric Lattice Field Theory on a Supersymmetric Lattice 1

نویسندگان

  • H. Grosse
  • C. Klim
چکیده

A lattice-type regularization of the supersymmetric eld theories on a supersphere is constructed by approximating the ring of scalar superrelds by an integer-valued sequence of nite dimensional rings of supermatrices and using the diierencial calculus of non-commutative geometry. The regulated theory involves only nite number of degrees of freedom and is manifestly supersymmetric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erwin Schrr Odinger International Institute for Mathematical Physics A-1090 Wien, Austria Su Q (2) Lattice Gauge Theory Su Q (2) Lattice Gauge Theory

We reformulate the Hamiltonian approach to lattice gauge theories such that, at the classical level, the gauge group does not act canonically, but instead as a Poisson-Lie group. At the quantum level, it then gets promoted to a quantum group gauge symmetry. The theory depends on two parameters-the deformation parameter and the lattice spacing a. We show that the system of Kogut and Susskind is ...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Combinatorial Quantization of the Hamiltonian Chern-simons Theory Combinatorial Quantization of the Hamiltonian Chern-simons Theory

Motivated by a recent paper of Fock and Rosly 6] we describe a mathematically precise quantization of the Hamiltonian Chern-Simons theory. We introduce the Chern-Simons theory on the lattice which reproduces the results of the continuous theory exactly. The lattice model enjoys the symmetry with respect to a quantum gauge group. Using this fact we construct the algebra of observables of the Ham...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics on Finite 4d Quantum Field Theory in Non-commutative Geometry on Finite 4d Quantum Field Theory in Non-commutative Geometry 1

The truncated 4-dimensional sphere S 4 and the action of the self-interacting scalar eld on it are constructed. The path integral quantization is performed while simultaneously keeping the SO(5) symmetry and the nite number of degrees of freedom. The usual eld theory UV-divergences are manifestly absent.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Topologically Nontrivial Field Conngurations in Noncommutative Geometry Topologically Nontrivial Field Conngurations in Noncommutative Geometry 1

In the framework of noncommutative geometry we describe spinor elds with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding eld theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the elds are regularized and they contain only nite number of modes. 2...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Rayleigh{type Isoperimetric Inequality with a Homogeneous Magnetic Field Rayleigh-type Isoperimetric Inequality with a Homogeneous Magnetic Eld

We prove that the two dimensional free magnetic Schrr odinger operator, with a xed constant magnetic eld and Dirichlet boundary conditions on a planar domain with a given area, attains its smallest possible eigenvalue if the domain is a disk. We also give some rough bounds on the lowest magnetic eigenvalue of the disk. Running title: Magnetic Rayleigh-type inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009